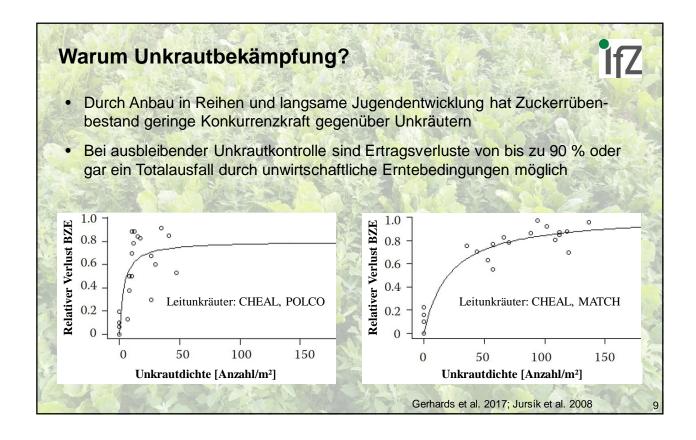
Unkrautbekämpfung im Zuckerrübenanbau in Deutschland - Situationsanalyse

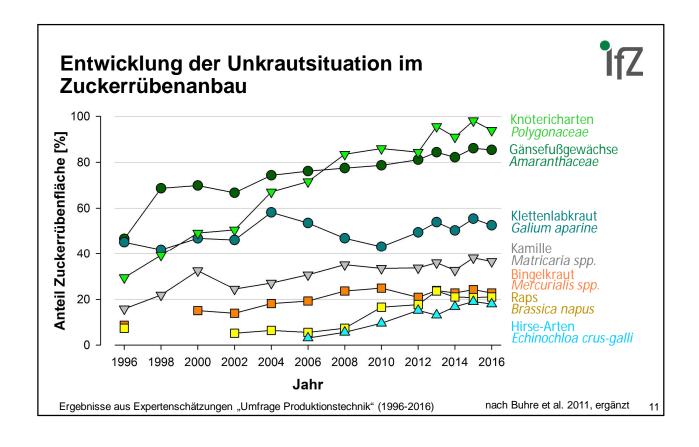
Dr. Daniel Laufer

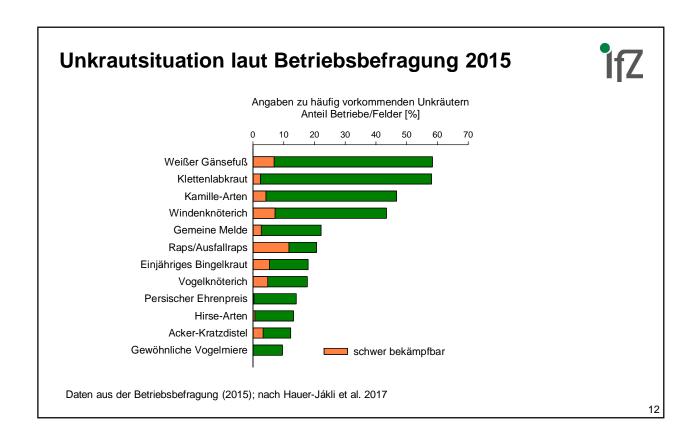
Institut für Zuckerrübenforschung, Göttingen

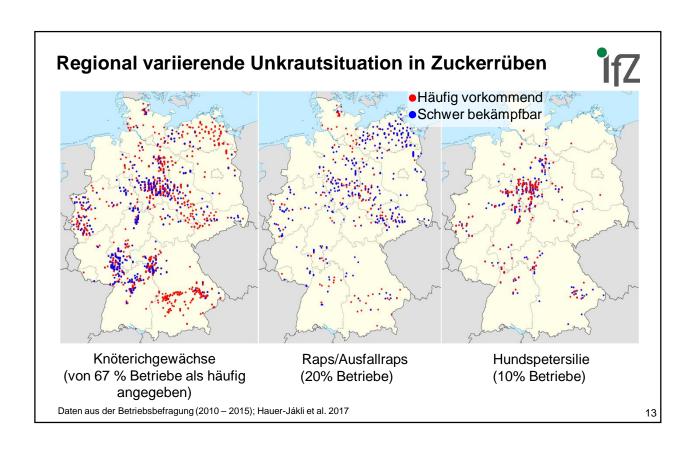
Fachseminar "Pflanzenschutz im Ackerbau", 05. Februar 2020, Bernburg

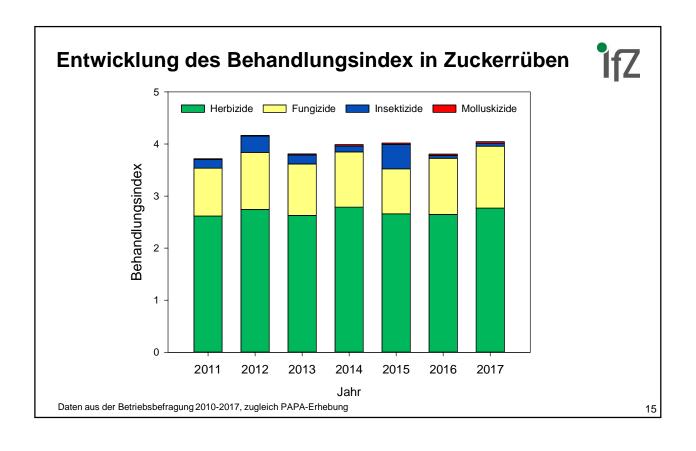
Unkrautbekämpfung im Zuckerrübenanbau in Deutschland - Situationsanalyse

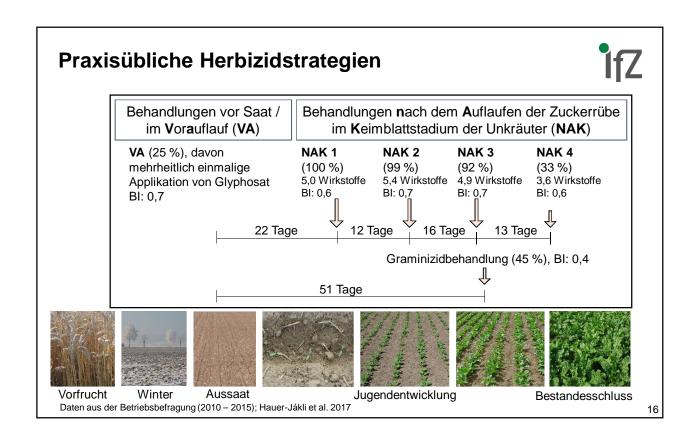


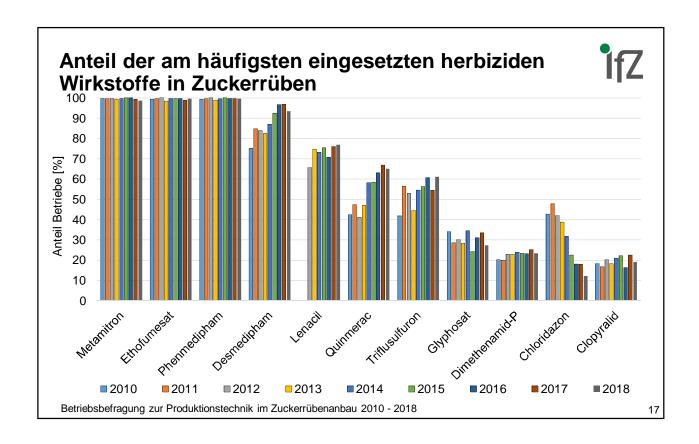

- 1) Sachstand und Entwicklungen bei Unkräutern
- 2) Übersicht zum derzeitigen Einsatz von Herbiziden
- 3) Sachstand und Entwicklungen zu herbiziden Wirkstoffen und Pflanzenschutzmitteln
- 4) Resistenz von Unkräutern gegenüber Pflanzenschutzmitteln
- 5) Mechanische Ansätze zur Unkrautregulierung
- 6) Aktuelle Versuchsergebnisse
- 7) Fazit

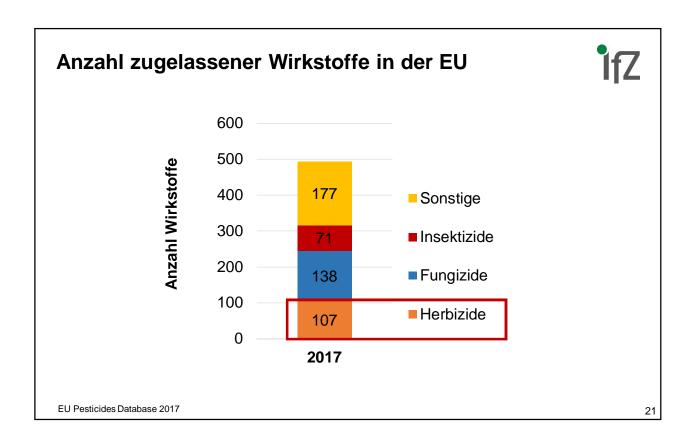

6

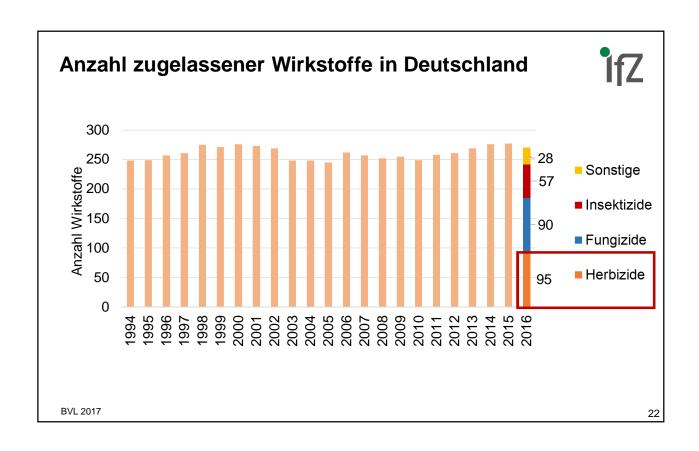

1) Sachstand und Entwicklungen bei Unkräutern

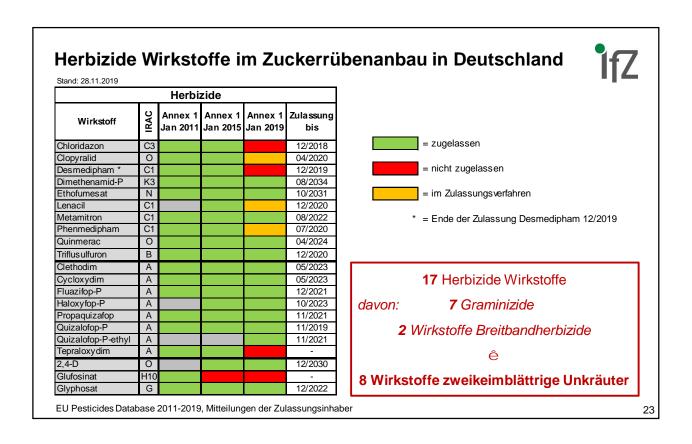







2) Übersicht zum derzeitigen Einsatz von Herbiziden in Zuckerrüben



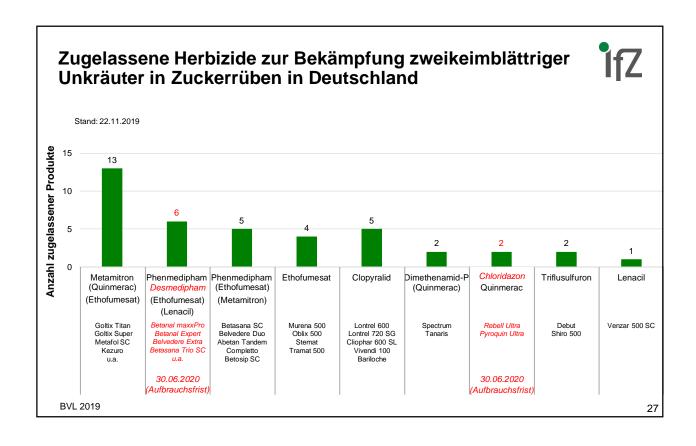


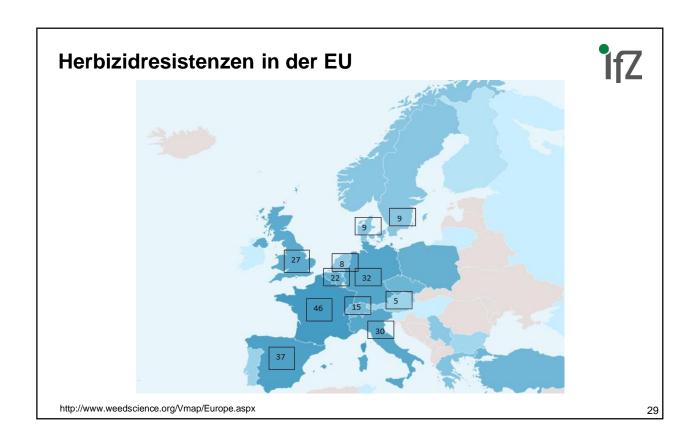
3) Sachstand und Entwicklungen zu Wirkstoffen und Pflanzenschutzmitteln

Erstzulassung einiger Herbizidwirkstoffe

Wirkstoff	Klasse	Erstzulassung (ca.)
Pyrazon (Chloridazon)	C3	1960
Lenacil	C1	1965
Phenmedipham	C1	1970
Desmedipham	C1	1970
Glyphosat	G	1974
Metamitron	C1	1980
Ethofumesat	N	1985
Cycloxydim	Α	1990
Fluazifop	Α	1990
Clopyralid	Ο	1992
Triflusulfuron	В	1994
Quinmerac	0	1994

25


Herbizide Wirkstoffe im Zuckerrübenanbau in Deutschland


Herbizide				
Wirkstoff	Wirkort	Überwiegende Wirkungsweise		
Clopyralid	0	Blatt		
Desmedipham	C1	Blatt		
Phenmedipham	C1	Blatt		
Triflusulfuron	В	Blatt		
Dimethenamid-P	K3	Boden		
Lenacil	C1	Boden		
Metamitron	C1	Boden		
Ethofumesat	N	Boden (+Blatt)		
Quinmerac	0	Boden (+Blatt)		

g Ende der Zulassung 31.12.2019 g Im Zulassungsverfahren

26

4) Resistenz von Unkräutern gegenüber Pflanzenschutzmitteln

Herbizidresistenzen in Zuckerrüben in der EU					
Unkrautart	EPPO-Code	Land	Jahr	Resistenzart	
Weißer Gänsefuß	Chenopodium album	Belgium	1980	Photosystem II inhibitors (C1/5); Metamitron	
Ackerfuchsschwanz	Alopecurus myosuroides	Germany	1983	Multiple Resistance: 2 Sites of Action ACCase inhibitors (A/1); PSII inhibitor (C2/7)	
Rauhhaariger Amarant	Amaranthus retroflexus	Czech Republic	1985	Photosystem II inhibitors (C1/5)	
Weißer Gänsefuß	Chenopodium album	Czech Republic	1986	Photosystem II inhibitors (C1/5); Lenacil	
Gestreifter Gänsefuß	Chenopodium album var. striatum	Czech Republic	1989	Photosystem II inhibitors (C1/5)	
Rauhhaariger Amarant	Amaranthus retroflexus	Poland	1991	Photosystem II inhibitors (C1/5)	
Weißer Gänsefuß	Chenopodium album	Poland	1991	Photosystem II inhibitors (C1/5); Metamitron	
Rauhhaariger Amarant	Amaranthus retroflexus	Italy	1999	Photosystem II inhibitors (C1/5)	
Kurzähriges Glanzgras	Phalaris brachystachys	Italy	2001	ACCase inhibitors (A/1)	
Ackerfuchsschwanz	Alopecurus myosuroides	Germany	2003	ACCase inhibitors (A/1)	
Weißer Gänsefuß	Chenopodium album	Sweden	2005	Photosystem II inhibitors (C1/5); Metamitron	
Flughafer	Avena fatua	Germany	2009	Multiple Resistance: 2 Sites of Action ACCase inhibitors (A/1); ALS inhibitors (B/2)	
Flughafer	Avena fatua	Germany	2012	ACCase inhibitors (A/1)	
Gemeine Melde	Atriplex patula	Belgium	2015	Photosystem II inhibitors (C1/5) Lenacil, Metamitron, DMP, PMP	
http://www.weedscience.o	ora/				

Herbizidresistenzen in Zuckerrüben in Deutschland

- Vereinzelt im Zusammenhang mit der Anwendung von Metamitron verminderte Wirksamkeit gegenüber Weißem Gänsefuß (Resistenz Photosystem II-Hemmern)
- In Feldversuchen mit resistentem Weißen Gänsefuß zeigte die Kombination mit den herbiziden Wirkstoffen **Desmedipham** und **Phenmedipham** jedoch eine hohe Wirksamkeit

Thiel und Varrelmann, 2013

31

5) Mechanische Ansätze zur Unkrautregulierung

Mechanische Ansätze zur Unkrautregulierung

- Kombination von mechanischer Unkrautbekämpfung zwischen den Saatreihen und chemischer Unkrautbekämpfung in den Saatreihen ist praxisreif
 - Hohe Investitionen für Spezialmaschinen
 - Terminierung des Einsatzzeitpunktes, kurze Zeitfenster
- Auch für kombiniert chemisch-mechanische Verfahren werden hoch wirksame selektive Herbizide benötigt, die jedoch mit verminderte Menge je Hektar angewendet werden
- Für die mechanische Unkrautbekämpfung in den Saatreihen gibt es technische Ansätze, die jedoch bisher nicht praxisreif sind

Koch (2017)

34

Fazit

- Bei ausbleibender Unkrautkontrolle sind Ertragsverluste von bis zu 90 % oder gar ein Totalausfall durch unwirtschaftliche Erntebedingungen möglich
- Anzahl verfügbarer Wirkstoffe auf EU-Ebene abnehmend
- Desmedipham und Phenmedipham Basis bisheriger Herbizidstrategien
- Ohne Desmedipham und Phenmedipham:
 - Wirkungslücken im blattaktiven Bereich, da verbleibende blattaktive Wirkstoffe andere Wirkungsspektren haben
 - Bekämpfung von Windenknöterich (Polygonum convolvulus) erschwert
 - zunehmendens Risiko für die Entstehung von metamitronresistenten Biotypen des Weißen Gänsefußes

44

Erwin Ladewig; Cord Buhre; Christine Kenter; Nicol Stockfisch; Mark Varrelmann; Anne-Katrin Mahlein

Pflanzenschutz im Zuckerrübenanbau in Deutschland – Situations analyse 2018

Crop protection in sugar beet cultivation in Germany – situation analysis 2018

Die Kontrolle von Schaderregern ist eine wesentliche Vor-aussetzung zur Sicherung der Erträge von Kulturpflanzen. Diese Situationsanalyse stellt das Auftreten von Unkräutern, Krankheiten und tierischen Schädlingen im Zuckerrü-benanbau in Deutschland dar und erläutert die Verfahren zu ihrer Kontrolle. Wesentlicher Baustein des integrierten Pflanzenschutzes, der in der EU maßgeblich ist, sind Sorten mit Resistenz- oder Toleranzeigenschaften, z. B. gegenüber Rizomania oder Nematoden. Zur Bekämpfung von Schaderregern werden auch chemische Pflanzenschutzmittel eingesetzt, deren aktuelle und mittelfristige Verfügbarkeit gezeigt ist. Hier steht der Zuckerrübenanbau derzeit vor großen Herausforderungen, insbesondere durch den Weg-fall der neonicotinoiden Saatgutbeizungen ab 2019. Neben der Zulassungssituation, die auch noch weitere Wirkstoffe betrifft, spielt auch die Entwicklung von resistenten Schaderregern eine entscheidende Rolle für die Verfügbarkeit effizienter chemischer Bekämpfungsverfahren. Konsequenzen für den zukünftigen Pflanzenschutz im Zuckerrübenanbau werden aufgezeigt. Für eine längerfristige Nutzung der vor-handenen Wirkstoffe ist ein spezifisches Resistenzmanage-ment unerlässlich.

Schlagwörter: Zuckerrüben, Pflanzenschutz, Schaderreger,
Herbizide, Fungizide, Insektizide, Resistenz, Toleranz,
Deutschland

Key words: sugar beet, crop protection, pests, herbicides, fungicides, insecticides, resistance, tolerance, Germany

in Germany and measures to control them. In the EU, the application of integrated pest management is required. One of its key elements is the cultivation of varieties with resistance or tolerance properties, e.g. to Rhizomania or nema-todes. Chemical pesticides are also used to control pests, their current and medium-term availability is summarised. In this matter, sugarbeet cultivation is currently facing sed. In this matter, sugarbeet cultivation is currently facing major challenges, particularly the ban of neonicotinoid seed dressings from 2019 on. The approval status also affects other active ingredients. Furthermore, the emergence of resistant pathogens is crucial for the availability of effective chemical control methods. Consequences for future crop protection in sugar beet cultivation are described. Specific resistance management is essential for the long-term use of the present active substances.

Sugar Industry 143, 2018, 708-722

https://www.ifz-goettingen.de/images/Situationsbericht_2018.pdf

