

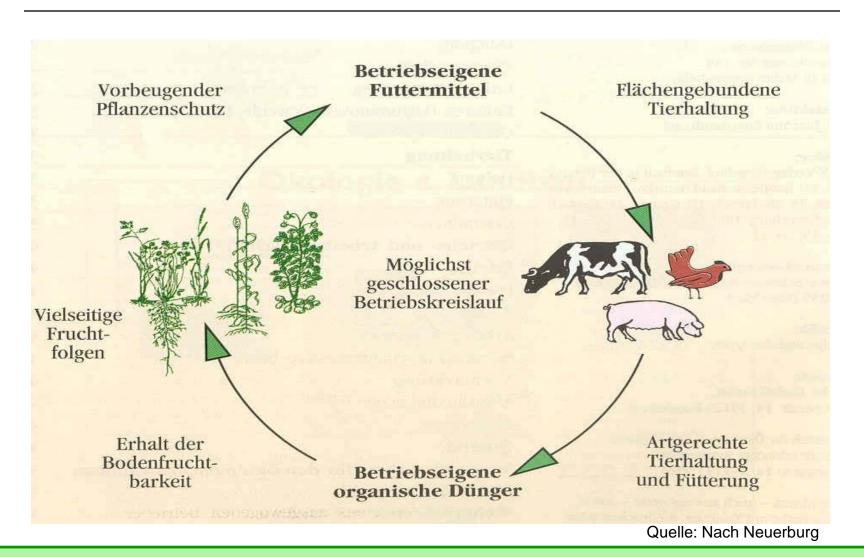
Düngung im ökologischen Landbau Chancen und Herausforderungen in der Umsetzung der neuen DüV

Feldtag "Ökologischer Pflanzenbau" 12. Juni 2019 – Bernburg-Strenzfeld

Florian Rohlfing
Fachbereich Ökologischer Landbau
Landwirtschaftskammer Niedersachen

Einleitung

Ökologischer Landbau in Deutschland 2018


Quelle: BÖLW (2019), BLE (2019) und Statistisches Bundesamt (2019); EU-Bio für 2018 geschätzt

Quelle: BÖLW 2019

Landwirtschaftskammer Niedersachsen

Nährstoffmanagement

Grundnährstoffe

- Positivliste im Anhang der EG Öko-VO, bzw. Verbandsrichtlinien beachten!
- Bedarf muss vorliegen > Düngung bei Versorgungsstufe A bis C möglich (bei C max. Entzug der Pflanze)
- > Einsatz und Begründung muss dokumentiert werden (Kontrolle)

Problem: Stickstoff und Phosphor

Stickstoffzufuhr

- N-Versorgung organisch, nicht mineralisch
- Möglichst wirtschaftseigene Dünger
- Leguminosenanbau (Anbaupausen beachten)
- Cut and Carry
 - > EU-Öko-VO: < 170 kg N/ha (Wirtschaftsdünger)

> Verbände:

Gesamt-Düngermenge (aus eigener Tierhaltung und externen Düngern)

< 1,4 DE/ha (= 112 kg N/ha)

davon Zukauf < 0,5 DE/ha (= 40 kg N/ha) auf Betriebsdurchschnitt bezogen

(höhere Gaben sind nur bei Sonderkulturen, Gemüse gestattet)

Phosphorzufuhr

- P-Versorgung organisch, nicht mineralisch
- Organische P-Quellen:
 - Wirtschaftsdünger
 - Rohphosphate

https://d2omi18ltwfwfj.cloudfront.net/media/imag e/42/39/99/blaue-lupine-blumenwiese.jpg

Freisetzung aus dem Unterboden durch Leguminosen (z.B. Lupinen)

Phosphor ist nur in geringem Maße auswaschungsgefährdet

Pflanzenernährung in der ÖL

- Wenige Düngemittel mit sofort verfügbaren Nährstoffen
- Problem: Synchronisierung der Freisetzung aus dem Boden und dem zeitlichen Bedarf der Pflanze
- Hohe N-Verluste bei Lagerung und Ausbringung von organischen Düngemitteln
- Kohlenstoffanteile in Wirtschaftsdüngern fördern Immobilisierung von pflanzenverfügbarem N
- Steigende phytopathologische Probleme bei steigender N-Versorgung der Pflanzen
- Untersuchungen zeigen Handlungsbedarf bei Kalium und Phosphor

Langzeitstrategie

 Erhöhung des Humuspools im Boden durch konsequente und langjährige Düngung mit Festmist und Kompost

Impulsstrategie

 Verwendung von Düngemitteln mit kurzfristig hoher Nährstoffverfügbarkeit

Kombinationsstrategie

- Verwendung von Düngemitteln für den langfristigen Humusaufbau
- Direkte Ernährung der Pflanzen mit schnell verfügbaren Düngemitteln

Nährstoffsituation im ÖL ist in Ackerbau Regionen angespannt:

- Flächenzuwachs vor allem im Ackerbau
- Ackerbau geprägte Regionen > meist viehlose Betriebe
- Zukaufdünger im Ackerbau oft ökonomisch nicht sinnvoll

Lösungsansätze:

- Absicherung durch eigene Tierhaltung
- Futtermist Kooperation gewinnen zunehmend an Bedeutung
- Cut and Carry zur Kleegras Verwertung
- Kleegras Kompostierung

Wünschenswert: Umstellung auf Flüssigmistsysteme

- Schnellere Verfügbarkeit von Nährstoffen auch bei Trockenheit
- Bessere Homogenisierung
- Höhere Verteilungsgenauigkeit
- Emissionsmindernde Applikationstechnik vorhanden

Aktuelles Versuchsvorhaben:

Vergleich von bodennaher Ausbringungstechnik -Schleppschlauch, Schleppschuh und Scheibeninjektor zur Ausbringung von flüssigen organischen Dünger in Winterweizen

Finanzielle Unterstützung:

Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz

Aber: Vorteile von Festmistsystemen nicht zu unterschätzen!

- Phytosanitäre Effekte durch Festmist und Kompost
- Lieferant von wichtigen Grundnährstoffen (bspw. Kalium)
- Stroh als Kohlenstofflieferant (Düngung zu Leguminosen möglich)
- Kostengünstige Ausbringung und Lagerung
- Vorherrschende Stalllsysteme in vielen Bio-Betrieben

Herausforderungen der neuen DüV

- Probleme vor allem bei der Phosphorversorgung
- Flächen mit hohem Phosphorgehalt dürfen nur im Höhe Abfuhr gedüngt werden
- Im ÖL verfügbare P-Dünger aber größtenteils Mehrnährstoffdünger

Szenario 1:

- Flächen mit hohen
 Phoshorgehalten
- DüV: P nur noch nach Abfuhr
- Stickstoffversorgung der Pflanzen problematisch

Szenario 2:

- Flächen mit niedrigen
 Phoshorgehalten
- DüV: 170 kg N
 Phosphorversorgung der
 Pflanzen problematisch

Schließung des Nährstoffkreislaufs

- Rückführung von Nährstoffen aus dem urbanen Umfeld
- Entwicklung und Rückgewinnung von schadstoffarmen und hygienisch einwandfreien P-Recycel Düngern

EDV gestütztes Nährstoffmanagement

- Schlag- und kulturspezifischen Düngung gekoppelt mit regelmäßigen Bodenuntersuchung
- EDV gestützte Düngeplanungsprogramme
- Modelle zur Abschätzung der Nährstofffreisetzung aus org. Düngern

Fazit

- Nährstoffeffizienz im ÖL muss gesteigert werden
- Düngungsstrategien sollten überdacht werden (Verbände?)
- Mehrnährstoffdünger stellen ÖL in Bezug auf die neue DüV vor große Herausforderungen
- Böden mit hohem und niedrigen Phosphorgehalten nach neuer DüV für die ÖL problematisch
- Düngemittel mit hohem P-Gehalt und geringem N-Gehalt werden benötigt
- Rohphosphate sind aufgrund zu langsamer Wirksamkeit und hoher Schadstofffrachten als problematisch anzusehen

Aktuelle Versuchsvorhaben des Fachbereichs Ökolandbau zum Themenschwerpunkt: Nährstoffversorgung

- Vergleich von bodennaher Ausbringungstechnik Schleppschlauch, Schleppschuh und Scheibeninjektor zur
 Ausbringung von flüssigen organischen Dünger in
 Winterweizen
- Vergleich verschiedener Unkrautregulierungstechniken im Getreide mit und ohne HTK-Düngung im Winterweizen
- Schwefeldüngungsversuch in Wintererbse-Triticale Gemenge –
 Vergleich verschiedener S-Düngemittel

Vielen Dank für Ihre Aufmerksamkeit!