

10.6.2021

Minimalprotein- und -Minimalphosphorkonzept - was ist möglich?

Warum ein Minimalprotein und -phosphorkonzept?

Vorgaben der Düngeverordnung einhalten (rote und gelbe Gebiete)

Zum ersten mal wird die N- und P-reduzierte Fütterung in Verordnungen/Gesetzen in Deutschland direkt vorgeschrieben

Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft)

nach Schneider 2018

> 2000 Mastschweine, > 750 Sauen > 6000 Ferkelplätze

Maximale Nährstoffausscheidung in kg/(TP·a)

Produktionsverfahren für Schweine*	TA Luft (v	orl.)	DLG 2014 (1	Band 199)
			Stark N-	und P
	N	D.O.	reduziert N	D.O.
Sauen	I IN	P ₂ O ₅	IN	P ₂ O ₅
Sauenhaltung mit Ferkeln bis 8 kg Lebendmasse	23,2	10,3	23,2	10,3
Sauenhaltung mit verkauften Ferkeln bis 28 kg Lebendmasse	30,0	15,2	36,6	15,2
Spezialisierte Ferkela	ufzucht			
Bis 700 g Tageszunahme; von 28 bis 118 kg Lebendmasse; 210 kg Zuwachs; 2,33 Durchgänge	9,6	3,8	9,6	3,8
750 g Tageszunahme; von 28 bis118 kg Lebendmasse; 223 kg Zuwachs; 2,5 Durchgänge	9,8	3,8	9,8	3,8
850 g Tageszunahme; von 28 bis 118 kg Lebenmasse; 246 kg Zuwachs; 2,7 Durchgänge	10,6	3,9	10,6	3,9
950 g Tageszunahme; von 28 bis 118 kg Lebendmasse; 267 kg Zuwachs; 2,97 Durchgänge	10,8	4,0	10,8	4,0

Zusammensetzung des idealen Proteins für Schweine in Relation zum Lysin (Lysin = 100)

Aminosäure	DLG 2010	NRC 1998	Degussa 1999		Ajinomoto 2012	
			Anfangsmast	Endmast	Anfangsmast	Endmast
Lysin	100	100	100	100	100	100
Methionin/Cystin	55	57	61	64	60	60
Threonin	65	64	63	66	67	68
Tryptophan	18	18	19	18	20	19
Valin		67			> 65	> 65

Zu berücksichtigen sind auch nichtessentielle Aminosäuren

Verhältnis Stickstoff aus essentiellen AS und

Gesamtstickstoff: 43-50% (Gotterbarm et.al. 1998)

Tabelle: Schätzung des niedrigsten Stickstoffgehaltes (N) im Mastfutter

Mastabschnitt	Lysin (%)	ESA _N * (%)	ESA _N /Gesamt -N (%)	Gesamt-N (%)	Minimum RP** (%)
Anfangsmast	1,00	0,90	43 - 50	1,80 – 2,10	11 - 13
Endmast	0,90	0,81	43 - 50	1,62 – 1,89	10 - 12

^{*} alle essentiellen Aminosäuren nach idealen Protein (Tabelle 1) ** RP = N x 6,25

Barthelt 2012

Schweinemastversuch Haus Düsse (10/2018)

So wurde gefüttert

Kennwerte zur Fütterung im Versuch zur extremen N- und P-Einsparung (Kontrollgruppe stark N-/P-reduziert, Versuchsgruppe extrem N-/P-reduziert)

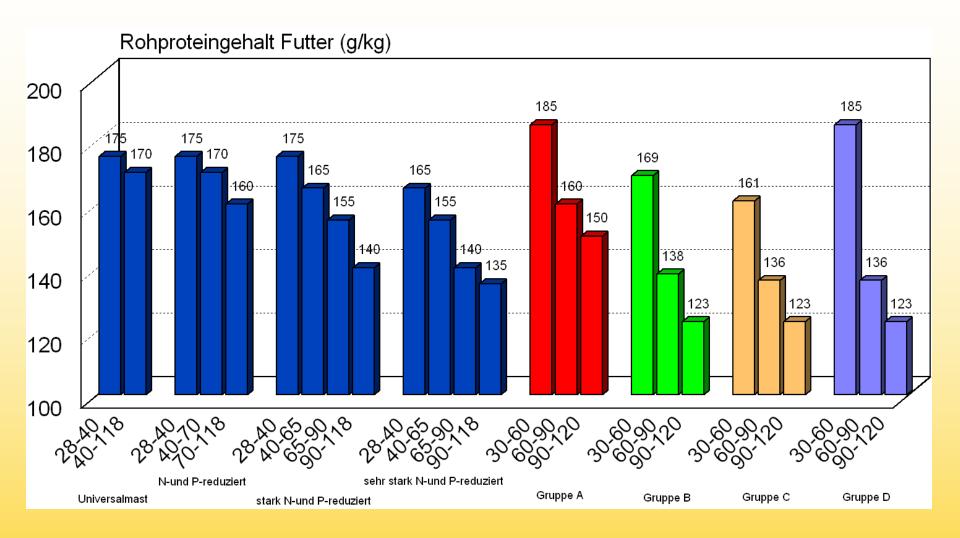
Gruppe		Kontrolle	Versuch	Kontrolle	Versuch
Futterphase		bis 60 kg	bis 50 kg	ab 60 kg	ab 50 kg
Energie	MJ ME/kg	13,1	13,1	13,0	13,0
Rohprotein	%	16	13	14,5	10,5
Phosphor	%	0,43	0,35	0,36	0,32
Gerste	%	32	30	34	31
Weizen	%	18	24	19	24
Mais	%	18	19	19	19
Roggen	%	4,5	12	5,5	16,5
Sojaschrot44	%	17,5	7	13,8	0
Weizenkleie	%	4	0	2,6	0
Sojaschalen	%	2	4,1	3,2	5,3
Öl (Soja)	%	1	0,35	0,7	0,9
Calciumcarbonat	%	1,15	0,95	0,9	0,95
Natriumchlorid	%	0,5	0,5	0,5	0,5
Xyl/Gluca ¹⁾	%	0,005	0,005	0,005	0,005
Vormischung ²⁾	%	1,345	2,095	0,795	1,845
Futterpreis ³⁾	€/dt	28,95	29,75	26,95	28,95

¹⁾ Xyl/Gluca = Xylanase/Glucanase, 2) Vormischung u. a. mit Zusatz an freien Aminosäuren Lysin, Methionin + Cystin, Treonin, Tryptophan und Valin, 3) tatsächlicher Zukaufspreis auf Haus Düsse zum Versuchszeitpunkt

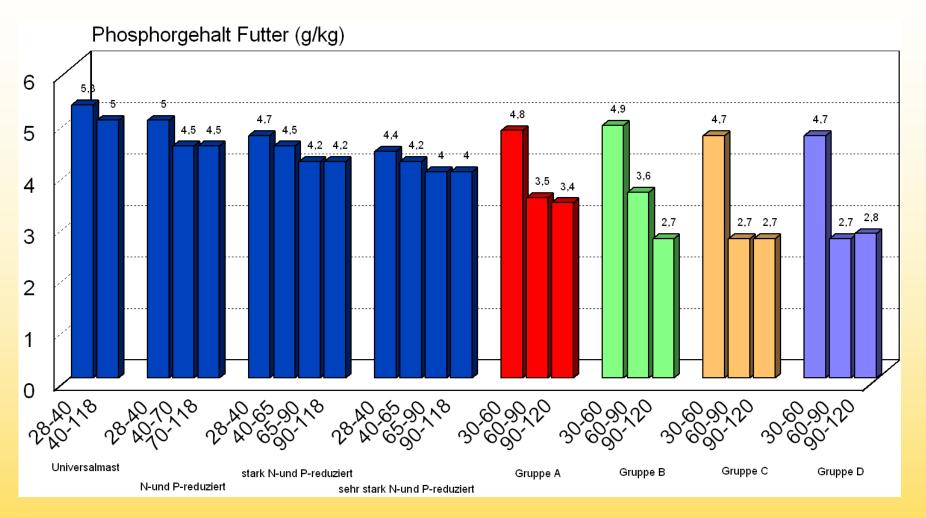
Quelle: Norda et al., Wochenblatt 44/2018

		100,700,700	rolle -reduziert	Vers extrem N-/	such P-reduzier
Mastphasenbeginn bei	kg	27,8	62,6	28,3	53,1
Rohprotein	g/kg	160	145	130	105
Phosphor	g/kg	4,3	3,6	3,5	3,2
Futterpreis	€/dt	28,95	26,95	29,75	28,95
Futteraufwand je kg Zuwachs	kg	2,	57	2,	70
Futterkosten	€/MS	68,	80	75,45	(+6,65)
Überschuss über Futterkosten	€/MS	78,	05	The second second second	(-7,64)
N-Ausscheidungen	kg/MS	3,4	49	2,11 (-:	39,5 %)
P-Ausscheidungen	kg/MS	0,456		0,357 (-21,7 %)	
P ₂ O ₅	kg/MS	1,045		0,818	
Flächenbedarf für 1000 Schwein	1e				
 nach Stickstoffanfall¹⁾ 	ha	16,4		9,93 (-6,47)	
– nach Phosphatanfall ²⁾	ha	13,1		10,2 (-2,90)	
Flächenersparnis			6,2	ha	
Ökonomische Bewertung für Beis	spielbeti	rieb mit 1000) Mastschw	einen	
 schlechterer Überschuss der Versuchstiere über Futterkos 		-7,64 €/MS x 1000 MS = -7640 €			640 €
– Flächeneinsparung (Pacht abzüglich DKfL Ackerbau)		750 €/ha x 6,2 ha = 4650 €) €
- Saldo	-2990 € bzw2,99 €/MS				
- Mastdauerzuschlag		62 g geringere Tageszunahme x 0,03 €/Ta = 1,86 €/MS → -4,85 €/MS			

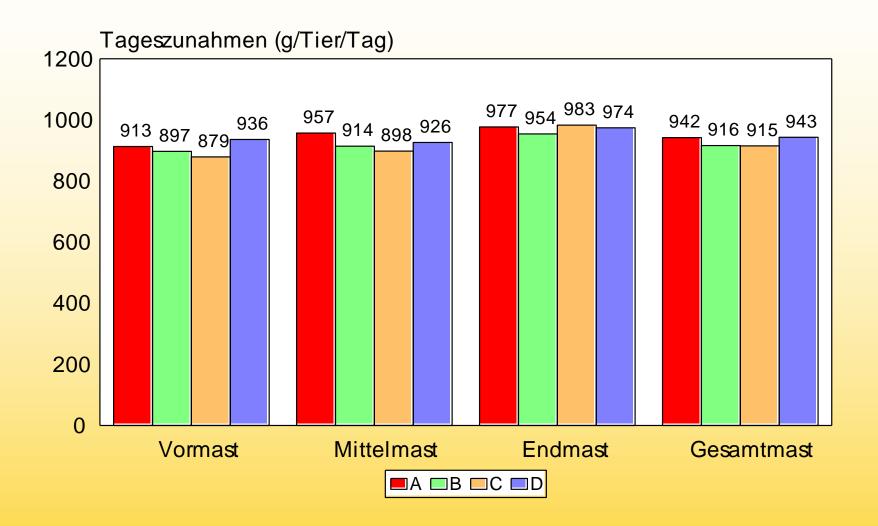
20 % gasfőrmigen N-Verlusten; ²⁾ bei Düngung auf 80 kg P₂O₅ Entzug/ha


Quelle: Norda et al., Wochenblatt 44/2018

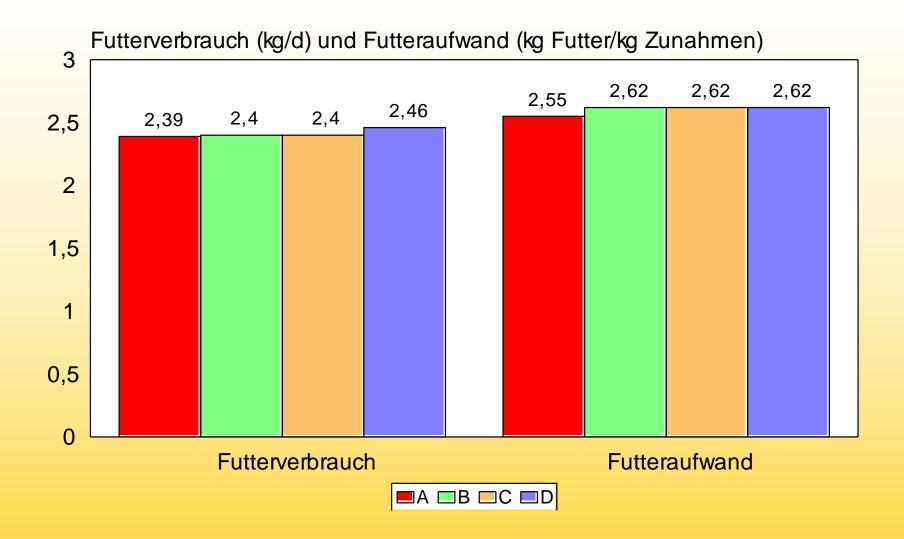
Versuch Iden 2020


- A nach DLG-Empfehlungen 18,5/16/15 RP und 0,43 0,35 P,
- B 16,9/13,8/12,3 RP und 0,43 0,32 (0,28) P (ohne mineralischen P-Zusatz ab der Mittelmast) und ohne Sojaeinsatz,
- C Unter sehr starke Proteinabsenkung ab der Vormast und 0,43 0,32 (0,28) P (ohne mineralischen P-Zusatz ab der Mittelmast),
- D Unter sehr starke Proteinabsenkung erst ab der Mittelmast und 0,43 0,32 (0,28) P (ohne mineralischen P-Zusatz ab der Mittelmast).

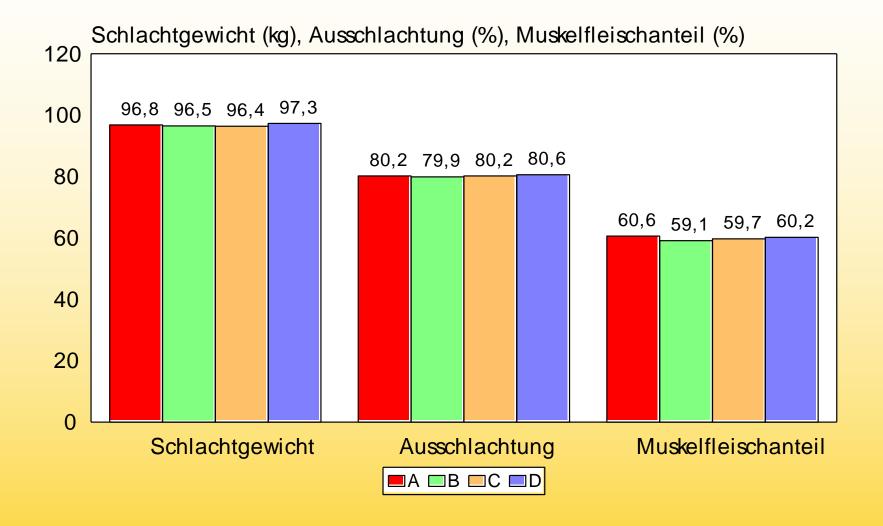
10.6.2021


		Vormas	t			Mitteln	ittelmast			Endmast			
		Α	В	С	D	Α	В	С	D	Α	В	С	D
Weizen	9	39,3	32,25	45,75	39,25	35,25	31,5	21,5	21,5	33	17,5	17,5	17,5
Soja, HP	9	15,75	0	6,5	15,75	4,75	0	2,75	2,75	2	0	0	0
Mais	9	15	15	15	15	15	15	15	15	15	15	15	15
Gerste	9	10	10	10	10	22,5	34	46,25	46,25	27,75	54,75	54,75	54,75
Tritikale	9	10	10	10	10	10	10	10	10	10	10	10	10
Rapsschrot	9	5,5	12	7,5	5,5	10	6,25	1,25	1,25	10	0	0	0
Ackerbohne	9	0	14,25	0	0	0	0	0	0	0	0	0	0
Sojaöl	9	1,55	3,1	1,7	1,55	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Futterkalk	9	1,055	1,07	1,065	1,055	0,97	1,01	1,035	1,035	0,82	0,89	0,89	0,89
MCP	9	0,38	0,31	0,455	0,38	0	0	0	0	0	0	0	0
Viehsalz	9	0,355	0,35	0,35	0,355	0,245	0,25	0,255	0,255	0,22	0,23	0,23	0,23
Premix	9	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
AA-Vormischung	9	0,619	1,159	1,225	0,619	0,600	1,11	1,125	1,125	0,4	0,854	0,854	0,854

0, .00.	0.0	Jan (1145)
3,1056	912	Monocalciumphosphate
1,9245	702	ThreAMINO®
1,2595	700	MetAMINO®
,		
0,5344	704	ValAMINO (L-Valine)
,		,
0,3668	705	L-Isoleucine
0.3329	703	TrypAMINO®
0,0020	, 00	11) pr 111111100


Voraussetzung: Kenntnisse über Inhaltsstoffe der eigenen Futtermittel

10



N-Bilanz der Versuchsgruppen

Gruppe	N- Aufnahme VM (kg)*	N- Aufnahme MM (kg)*	N-Auf- nahme EM (kg)*	ne EM Aufnahme Wachstum scheidun				ng
				(kg)	(kg)**	(%)***	(kg)	(%)***
Α	1,96	1,90	1,93	5,80	2,25	100	3,55	100
В	1,80	1,78	1,69	5,27	2,26	100	3,02	85
С	1,68	1,63	1,71	5,02	2,26	100	2,77	78
D	2,00	1,67	1,57	5,23	2,25	100	2,98	84

^{*16%} N pro kg Rohprotein

Einsparung von Sojaschrot pro Tier

Gruppe	Sojaverbrauch	Sojaersparnis gegenüber A				
	gesamt (kg)	(kg/Tier)	%			
Α	16,0					
В	0,0	16,0	100			
С	6,4	9,6	60			
D	13,0	3	20			

10.6.2021 AK Futter und Fütterung Dr. Manfred Weber, LLG

^{** 25,6} g N pro kg Wachstum

^{***} Gruppe A = 100 %

P-Bilanz der Versuchsgruppen

Gruppe	P- Aufnahme VM (g)	P- Aufnahme MM (g)	P- Aufnahme EM	P- Aufnahme gesamt	Wachstum	P- Ansatz		Aus- eidung
			(g)	(g)	(kg)	(g)*	(g)	(%)**
Α	329	272	274	875	447,78	100	428	100
В	328	280	232	840	449,31	100	391	91
С	309	211	235	755	449,31	100	306	72
D	324	220	215	759	448,29	100	311	73

^{*5,1} g/kg Zuwachs , ** Gruppe A = 100%

Nährstoffausscheidungen im Vergleich zu den DLG-Standardausscheidungen

Gruppe	Α	В	С	D	DLG*	DLG*
					Stark N-P	Sehr stark N-P
					reduziert	reduziert
Stickstoffa	usscheidung ((g/Schwein)				
	3550	3020	2770	2980	3870	3490
Phosphora	ausscheidung	(g/Schwein)				
analysiert	428	391	306	311	628	569
deklariert	401	387	379	380		

*nach DLG-Merkblatt 418

10.6.2021

Fazit

- Der Versuch hat gezeigt, dass auch eine Reduktion von Protein und Phosphor unter den Standard "sehr stark reduziert" keine Auswirkungen auf die biologischen Leistungen von Mastschweinen hat
- Gegenüber dem Standard "N-P-reduziert" sind damit noch einmal bis zu 20% an Stickstoff- und bis zu 30% an Phosphorausscheidungen einzusparen.
- Dies gilt auch für Mischungen, die komplett auf den Einsatz von Sojaextraktionsschrot verzichten.
- Erreicht wurde die starke Absenkung von Protein und Phosphor durch den kompletten Verzicht von Eiweißfuttermitteln in der Endmast und den Verzicht von mineralischen Phosphorzusatz ab der Mittelmast

Merksatz: 1% RP-Reduzierung reduziert Ammoniakemissionen um ca. 10%

10.6.2021 AK Futter und Fütterung Dr. Manfred Weber, LLG

